27O-ISMS34 Identification of Bis-heteroaryl Pyrazoles as Potent ALK2 (R206H) Inhibitors for Treatment of Fibrodysplasia Ossificanas Progressiva (FOP)

○Katsuhiko SEKIMATA¹, Tomohiro SATO², Naoki SAKAI³, Hisami WATANABE³, Chiemi MISHIMA-TSUMAGARI³, Tomonori TAGURI¹, Takehisa MATSUMOTO³, Noriko HANDA⁴, Teruki HONMA², Akiko TANAKA³, Mikako SHIROUZU³, Shigeyuki YOKOYAMA⁴, Yoshinobu HASHIZUME⁵, Kohei MIYAZONO⁶, Hiroo KOYAMA¹

¹Drug Discovery Chemistry Platform Unit, RIKEN Center for Life Science Technologies, ²Drug Discovery Computational Chemistry Platform Unit, RIKEN Center for Life Science Technologies, ³Drug Discovery Structural Biology Platform Unit, RIKEN Center for Life Science Technologies, ⁴Crystallographic Drug Discovery Platform Unit, RIKEN Systems and Structural Biology Center, ⁵RIKEN Program for Drug Discovery and Medical Technology Platforms, ⁶Department of Molecular Pathology, Graduate School, The University of Tokyo

FOP is a rare disease of progressive heterotopic ossification in muscles, tendons, or ligaments with an incidence of 1 in 2 million individuals. FOP is caused by abnormal activation of a bone morphogenic proteins (BMP) signaling due to highly recurrent mutations including R206H in a intercellular glycine-serine-rich domain and kinase domain of Activin receptor-like kinase-2 (ALK2), a subtype of BMP type-I receptors. Thus, inhibition of BMP signaling, which is targeting ALK2 (R206H), might lead to a treatment or prevention for FOP.

A novel series of bis-heteroaryl pyrazole has been developed as potent ALK2 (R206H) inhibitors starting from *In silico* screening hit compounds using docking simulation studies, X-ray crystallographic analysis, and medicinal chemistry techniques.