GS01-1 Role of two-pore domain K⁺ channel K_{2P}5.1 and effect of pre-mRNA splicing inhibitor on K_{2P}5.1 expression and activity by pre-mRNA inhibitor

○Kyoko ENDO¹, Hiroaki KITO^{1,2}, Masanori FUJII¹, Susumu OHYA^{1,2} ¹Kyoto Pharmaceut. Univ., ²Grad. Sch. Med. Sci., Nagoya City Univ.

Two-pore domain K⁺ channel K_{2P}5.1 plays an important role in the regulation of Ca²⁺ signaling, and contributes to various cell functions such as proliferation, differentiation and cytokine production in T cells. We have reported that $K_{2P}5.1$ is upregulated in CD4⁺ T cells of the inflammatory bowel disease (IBD) model mice and the knockout of K_{2P} 5.1 in mice suppressed the disease responses implicated in the IBD model. We identified a novel splicing isoform of K_{2P}5.1, K_{2P}5.1B lacking the N-terminus of full-length K_{2P}5.1A from human and murine lymphoid tissues. Overexpression of $K_{2P}5.1B$ suppressed $K_{2P}5.1$ activity by inhibition of $K_{2P}5.1A$ membrane trafficking in HEK293 cells. The pre-mRNA splicing inhibitor, Pladienolide B (PB) upregulated K_{2P}5.1B expression, resulting in decrease in the $K_{2P}5.1$ activity in human leukemia K562 cells. In mouse splenic CD4⁺ T cells stimulated by concanavalin A, PB significantly inhibited $K_{2P}5.1$ activity by preventing $K_{2P}5.1A$ transcription, resulting in decrease in inflammatory cytokine production. These findings may provide a novel insight into therapeutic strategy for treating K_{2P}5.1-related diseases like autoimmune diseases.