Discovery of Novel 5,6,7,8-tetrahydro[1,2,4]Triazolo[4,3-a]Pyridine Derivatives as *γ*-secretase Modulators Takafumi TAKAI¹, Tatsuki KOIKE¹, Minoru NAKAMURA¹, Yasutaka HOASHI¹, Yoshihide TOMATA¹, Sachie MORIMOTO¹, Yuichi KAJITA¹, Toshiro YAMASHITA¹, Naohiro TAYA¹, Tetsuya TSUKAMOTO¹, Tomomichi WATANABE¹, Koji MURAKAMI¹, Tomoko IGARI¹, Makoto KAMATA¹

¹Takeda Pharmaceutical Company Limited

 γ -Secretase modulators (GSMs), which lower pathogenic amyloid beta (A β) without affecting the production of total A β or Notch signal, have emerged as a potential therapeutic agent for Alzheimer' s disease (AD). A novel series of 5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-*a*]pyridine derivatives was discovered and characterized as GSMs. The optimization study using ligand-lipophilicity efficiency (LLE) as a drug-likeness guideline led to identification of various types of high-LLE GSMs with potent in vivo A β_{42} -lowering effects by single administration. Furthermore, multiple oral administration of the representative compound significantly reduced soluble and insoluble brain A β_{42} , and ameliorated cognitive deficit in novel object recognition test (NORT) using Tg2576 mice as an AD model.