
26G-ISMS20 **Discovery of a Novel PDE10A Inhibitor as Highly Effective for Schizophrenia** O Yoichi KADOH¹, Takehiko MATSUMURA¹, Yoshihito TANAKA¹, Mitsuya HONGU¹, Haruko MIYOSHI¹, Mayumi KIMURA¹, Kei TAKEDOMI¹, Kenji OMORI¹, Jun KOTERA¹, Takashi SASAKI¹, Kiichi TANAKA¹, Keiko MIWA¹, Tamaki KOBAYASHI¹, Hiroyuki TANIGUCHI¹, Taketoshi ISHII¹, Yumi WATANABE¹, Haruna ITODA¹, Rikiya OHASHI¹, Kouki KOJIMA¹, Masaya FUKUDA¹, Saori SATO¹, Itsuko NAKAMURA¹, Toshiaki SAKAMOTO¹, Toshiyuki HIMIYAMA¹, Masataka HIKOTA¹, Eiji KAWANISHI¹

Phosphodiesterase10A (PDE10A), a dual hydrolase of cAMP and cGMP, is highly expressed in striatal medium spiny neurons (MSN). Inhibition of PDE10A modulates the activity of MSN via the regulation of cAMP. Therefore PDE10A inhibitor is expected as a therapeutic method for schizophrenia. We transformed Avanafil 1 (PDE5 inhibitor) derivatives, and discovered compound 2 that had weak inhibitory activity against PDE10A. More conversion of compound 2 improved the metabolic stability and brain penetration, and dimethylaminoquinoxaline substituted compound 3 that attenuated conditioned avoidance responses (CAR) in rats was produced. We performed in-depth optimization, and successfully obtained stilbene compound 4. The compound was substituted with 3-methyl-7-fluoro quinoxaline substituents, and reduced genotoxicity and CYP inhibition.

