 ○ Taisuke KATOH¹, Masato YOSHIKAWA¹, Takeshi YAMAMOTO¹, Ryosuke ARAI¹, Noriyuki NII¹, Yoshihide TOMATA¹, Shinkichi SUZUKI¹, Ryoukichi KOYAMA¹, Nobuyuki NEGORO¹, Takatoshi YOGO¹ ¹Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd
We describe a methodology for quick development of fluorescent probes with the desired potency for the target of interest by using a method of parallel synthesis, termed as Parallel Fluorescent

Parallel Fluorescent Probe Synthesis Based on the Large-scale Preparation of

26G-ISMS12

BODIPY FL Propionic Acid

Probe Synthesis (Parallel-FPS). BODIPY FL propionic acid $\mathbf{1}$ is a widely used fluorophore, but is an expensive reagent, which hinders its use in parallel synthesis. Optimization of a synthetic scheme enabled us to obtain 50 g of $\mathbf{1}$ in one batch. With this large quantity of $\mathbf{1}$ in hand, we performed Parallel-FPS of BODIPY FL-labeled ligands for estrogen related receptor- α (ERR α). An initial trial of the parallel synthesis with various linkers provided a potent ligand for ERR α (Reporter IC₅₀ = 80 nM), demonstrating the usefulness of Parallel-FPS.