28AB-ISMS31 Discovery of Novel ITK Type 1¹/₂ Inhibitors Using Fragment-based Drug Design

○Sae JIKIHARA¹, Takahiko YAMAMOTO¹, Kazuya YASUO¹, Maki HATTORI¹, Eriko MATSUOKA¹, Chiaki FUJIKOSHI¹, Kazuya KANO¹, Morio NAGIRA¹, Satoru ISHIDA¹, Ichiro HIKITA¹, Ken-ichi MATSUMURA¹, Hiroto YAMAGUCHI¹, Kenichi HIGASHINO¹
¹Shionogi & Co., Ltd.

Interleukin-2 inducible tyrosine kinase (Itk) is a member of the Tec family tyrosine kinases. Its signaling pathway plays an important role in the activation and differentiation of T-cells. Therefore, inhibition of Itk is considered to be a novel therapeutic strategy for allergic diseases. Our lead compound was found to be categorized into type-11/2 inhibitor, characterized by DFG-in conformation of the activation Lys391 hinge region nocket loop. To improve its low Lck selectivity, we planned to switch the hinge binding motif using FBDD fragment-linking approach, while keeping its valuable back pocket binding motif, pyrazolone analogue. As a result, we could obtain a novel inhibitor with high Itk/Lck selectivity. The details of fragment screening, X-ray complex structures of fragments and compounds, process of Sugar pocket Asp500 Phe501 fragment-linking and SAR will be discussed. Figure: Xray structure of new inhibitor