

28AB-ISMS22 **Identification and Optimization of a Series of Tetrahydrobenzotriazoles as Metabotropic Glutamate Receptor 5-Selective Positive Allosteric Modulators that Improve Performance in a Preclinical Model of Cognition**

○Tomoyuki SHIBUGUCHI¹, John M ELLARD², Andrew MADIN², Oliver PHILPS², Mark HOPKIN², Scott HENDERSON², Louise BIRCH², Desmond O'CONNOR², Tohru ARAI¹, Kazuma TAKASE¹, Louise MORGAN², David REYNOLDS², Sonia TALMA², Eimear HOWLEY², Ben POWNEY², Jane E GARTLON², Lee A DAWSON², Luis CASTRO², Peter J ATKINSON²

¹Eisai Co., Ltd, Tsukuba Research Laboratories, ²Eisai Limited, European Knowledge Centre

Herein we describe a series of tetrahydrobenzotriazoles as novel, potent metabotropic glutamate receptor subtype 5 (mGlu5) positive allosteric modulators (PAMs). Exploration of the SAR surrounding the tetrahydrobenzotriazole core ultimately led to the identification of a potent mGlu5 PAM with a low maximal glutamate potency fold shift, acceptable in vitro DMPK parameters and in vivo PK profile and efficacy in the rat novel object recognition (NOR) assay. As a result it was identified as a suitable compound for progression to in vivo safety evaluation.