IMS-P15 Discovery of a Novel and Potent γ-Secretase Modulator, E2012, for the Treatment of Alzheimer's Disease

○Teiji KIMURA¹, Eriko DOI¹, Koki KAWANO¹, Koichi ITO¹, Noritaka KITAZAWA¹,
Toshihiko KANEKO¹, Mamoru TAKAISHI¹, Kougyoku SHIN¹, Takeo SASAKI¹, Shin ARAKI¹,
Akira ISHIBASHI¹, Hideki WATANABE¹, Yoshiyuki MURATA¹, Hirofumi AOYAGI¹,
Hiroaki HAGIWARA¹, Aichi OGASAWARA¹, François BERNIER¹, Toshihide HASHIMOTO¹,
Hiroyuki AMINO¹, Susumu TAKAKUWA¹, Kyoko YOSHIZAWA¹, Takehiko MIYAGAWA¹
¹Eisai Product Creation Systems, Eisai Co., Ltd.

To discover novel γ -secretase modulator (GSM), which is structurally different from NSAID derivatives, cell-based HTS was executed by measurement of amyloid beta 42 (A β 42) followed by characterization as a GSM. Among several structural classes identified from the HTS, phenyl imidazole derivatives were selected as a lead compound series through multiple drug-likeness assessments. The optimization process with systematic SAR investigation finally led to a clinical candidate (E2012), which demonstrates robust reduction of A β 42 in plasma, CSF and brain. In this presentation, the discovery process and profile of E2012 will be highlighted.