IMS-P5 NAMPT Is the Cellular Target of STF-31-Like Small-Molecule Probes

Obaisuke ITO^{1,5}, Drew J. ADAMS², Matthew G. REES², Brinton SEASHORE-LUDLOW², Xiaoling PUYANG¹, Alex H. RAMOS¹, Jaime H. CHEAH², Paul A. CLEMONS², Markus WARMUTH¹, Ping ZHU¹, Alykhan F. SHAMJI², Stuart L. SCHREIBER^{2,3,4} ¹H3 Biomedicine, Inc., ²Center for the Science of Therapeutics, ³Howard Hughes Medical Institute, Broad Institute, ⁴Department of Chemistry and Chemical Biology, Harvard University, ⁵Eisai Co., Ltd.

The small-molecule probes STF-31 and its analogue compound 146 were discovered as a direct inhibitor of the glucose transporter GLUT1. We profiled the sensitivity of 679 cancer cell lines to STF-31 and found that the pattern of response is tightly correlated with sensitivity to three different inhibitors of nicotinamide phosphoribosyltransferase (NAMPT). We also performed whole-exome next-generation sequencing of compound 146-resistant HCT116 clones and identified a recurrent NAMPT-H191R mutation. Ectopic expression of NAMPT-H191R conferred resistance to both STF-31 and compound 146 in cell lines. Together, our cancer-cell profiling and genomic approaches identify NAMPT inhibition as a critical mechanism by which STF-31-like compounds inhibit cancer cells.